Answer:
<em>LCM</em> = 
Step-by-step explanation:
Making factors of 
Taking
common:

Using <em>factorization</em> method:

Now, Making factors of 
Taking
common:

Using <em>factorization</em> method:

The underlined parts show the Highest Common Factor(HCF).
i.e. <em>HCF</em> is
.
We know the relation between <em>LCM, HCF</em> of the two numbers <em>'p' , 'q'</em> and the <em>numbers</em> themselves as:

Using equations <em>(1)</em> and <em>(2)</em>:

Hence, <em>LCM</em> = 
Answer:
13
Step-by-step explanation:
Answer:
Step-by-step explanation:
take two points on the line ,i take (-4,0) and (0,-2)
slope=(y2-y1)/(x2-x1)=(-2-0)/(0+4)=-2/4=-1/2
Answer:
(2 x - 3)^2 thus it's True
Step-by-step explanation:
Factor the following:
4 x^2 - 12 x + 9
Factor the quadratic 4 x^2 - 12 x + 9. The coefficient of x^2 is 4 and the constant term is 9. The product of 4 and 9 is 36. The factors of 36 which sum to -12 are -6 and -6. So 4 x^2 - 12 x + 9 = 4 x^2 - 6 x - 6 x + 9 = 2 x (2 x - 3) - 3 (2 x - 3):
2 x (2 x - 3) - 3 (2 x - 3)
Factor 2 x - 3 from 2 x (2 x - 3) - 3 (2 x - 3):
(2 x - 3) (2 x - 3)
(2 x - 3) (2 x - 3) = (2 x - 3)^2:
Answer: (2 x - 3)^2