You didn’t give the question
Answer:
a)
b) 
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability like this:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
Part b
For this case we select a sample size of n =32. Since the distribution for X is normal then the distribution for the sample mean
is given by:
And the new z score would be:



Answer:
D.
Bob should use the mean to make his selling price look like it's the greatest.
504+640=1144 hope this helps!
Answer:
A. {x: x ≥ -4}
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- {Builder Set Notation}
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
3(2x - 1) - 11x ≤ -3x + 5
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Distributive Property Distribute 3: 6x - 3 - 11x ≤ -3x + 5
- [Subtraction] Combine like terms: -5x - 3 ≤ -3x + 5
- [Addition Property of Equality] Add 5x on both sides: -3 ≤ 2x + 5
- [Subtraction Property of Equality] Subtract 5 on both sides: -8 ≤ 2x
- [Division Property of Equality] Divide 2 on both sides: -4 ≤ x
- Rewrite: x ≥ -4