Answer:
see below
Step-by-step explanation:
If we let X represent the number of bagels produced, and Y the number of croissants, then we want ...
(a) Max Profit = 20X +30Y
(b) Subject to ...
6X +3Y ≤ 6600 . . . . . . available flour
X + Y ≤ 1400 . . . . . . . . available yeast
2X +4Y ≤ 4800 . . . . . . available sugar
_____
Production of 400 bagels and 1000 croissants will produce a maximum profit of $380.
__
In the attached graph, we have shaded the areas that are NOT part of the solution set. (X and Y less than 0 are also not part of the solution set, but are left unshaded.) This approach can sometimes make the solution space easier to understand, since it is white.
The vertex of the solution space that moves the profit function farthest from the origin is the one we are seeking. The point that does that is (X, Y) = (400, 1000).
Answer:
18 ounces
Step-by-step explanation:
2 x 8 = 16 1/4 x 8 = 8/4 or 2
Answer:
Step-by-step explanation:
x+15+x+115+90=380 degree(sum of interior angles of four angles is 360 degree)
2x+220=360
2x=360-220
x=140/2
x=70 degree
The answer to your question will be 114.25
Answer: The total number of logs in the pile is 6.
Step-by-step explanation: Given that a stack of logs has 32 logs on the bottom layer. Each subsequent layer has 6 fewer logs than the previous layer and the top layer has two logs.
We are to find the total number of logs in the pile.
Let n represents the total number of logs in the pile.
Since each subsequent layer has 6 fewer logs then the previous layer, so the number of logs in each layer will become an ARITHMETIC sequence with
first term, a = 32 and common difference, d = -6.
We know that
the n-th term of an arithmetic sequence with first term a and common difference d is

Since there are n logs in the pile, so we get

Thus, the total number of logs in the pile is 6.