If there was a sudden drop in temperature after the evolution of the
first living cells, the rate of fermentation would drop due to the
temperature. My prediction would have to include the data, which is on
the graph. The question does not include a temperature to base my
hypothesis on so I would have to conclude that if the temperature
suddenly dropped to 35ºC to -20ºC, that the initial cells would die, and
that the atmosphere and the evolution of cyanobacteria would change
drastically.
Answer:
- The lac operon can be activated by the binding of allolactose to the repressor protein, releasing it from DNA and thereby allowing for transcription to occur.
- In response to low glucose levels, cAMP is upregulated; the binding of cAMP to the cAMP receptor protein triggers the activation of the operon.
Explanation:
Lactose operon or lac operon (includes lacZ, lacY and lacA genes) is found in some bacteria and the products of its genes are involved in lactose metabolism. So, this operon is active (genes are transcribed) when lactose is present and glucose is absent (or at low level). The operon is regulated by the lac repressor which acts as a lactose sensor and catabolite activator protein (CAP) which acts as a glucose sensor.
When there is lactose (in the form of allolactose) lac repressor detects it and stops being repressor. This enables transcription.
CAP detects glucose (via cAMP) and activates transcription when glucose levels are low.
Answer:
Lipids are the base molecules our bodies use to make hormones