9514 1404 393
Answer:
Step-by-step explanation:
In the left problem, you use the fact that <em>the sum of the segment lengths is equal to the overall length</em>.
AC +CB = AB
(3x -4) +(x -2) = 62
4x -6 = 62 . . . . . collect terms
4x = 68 . . . . . . . add 6
x = 17 . . . . . . . . . . divide by 4
__
In the right problem, you use the fact that <em>the sum of the angles is equal to the overall angle</em>. Here, that overall angle is a linear angle, so measures 180°.
∠DFG +∠GFE = ∠DFE
(5y +3) +(2y -5) = 180
7y = 182 . . . . . . . . . . . . . . collect terms, add 2
y = 26 . . . . . . . . . . . . . . . .divide by 7
Answer:

Step-by-step explanation:
The smallest side of a triangle is formed by the smallest angle in the triangle.
To find the side opposite (formed by) the 20 degree angle, we can use the Law of Cosines. The Law of Cosines states that for any triangle,
, where
,
, and
are the three sides of the triangle and
is the angle opposite to
.
Let
be the side opposite to the 20 degree angle.
Assign variables:
Substituting these variables, we get:

Therefore, the shortest side of this triangle is 3.5.
Answer:
composite
Step-by-step explanation: