It’s coming in contact with more air molecules than I would if it was in a ball because there is less surface area
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>
Magnitude of displacement =
Adding the squares gives displacement =
Displacement = ≈ 724.7m
The subordinate clause is "<span>who are loyal and industrious" and is used as an adjective to describe students.</span>
All vascular plants have parenchyma, collenchym<span>Vascular tissue transports food, water, hormones and minerals within the plant. Vascular tissue includes </span>xylem<span>, </span>phloem<span>, parenchyma, and cambium cells.</span>a, and sclerenchyma cells. Hoped it help!