1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
2 years ago
9

Laura and Elana are discussing how to solve the following problem: "A canary sits 10 m from the end of a 30-m-long clothesline,

and a grackle sits 5 m from the other end. The rope is pulled by two poles that each exert a 200-N force on it. The mass per unit length is 0.10 kg/m. At what frequency must you vibrate the line in order to dislodge the grackle while allowing the canary to sit undisturbed?"
Physics
1 answer:
horrorfan [7]2 years ago
3 0

Answer:

f=2.236\ Hz

Explanation:

Given:

Length of a rope,l=30\ m

Position of Canary on the rope from one end, l_c=10\ m

Position of Grackle on the rope from another end, l_g=5\ m

Tension in the rope, F_T=200\ N

linear mass distribution on the rope, \mu=0.1\ kg.m^{-1}

We have for the speed of wave on the string:

v^2=\frac{F_T}{\mu}

v^2=\frac{200}{\0.1}

v=44.7\ m.s^{-1}

<em>For canary to be undisturbed we need a node at this location.</em>

<em>Also, at the end close to Canary there must be a node to avoid any change in pattern of vibration.</em>

So,

the distance between Canary and the closer end must be equal to half the wavelength.

\frac{\lambda}{2} =10\ m

\Rightarrow \lambda=20\ m

∴Wavelength of wave to be produced = 20 m. This will give us nodes at the multiples of 10 and anti-nodes at the multiples of 5.

Now, frequency:

f=\frac{v}{\lambda}

f=\frac{44.7}{20}

f=2.236\ Hz

You might be interested in
Light waves can be easily blocked but ______ waves pass through all substances? ( fill in the blank)
IRINA_888 [86]
Compressional waves can travel through all states of matter.
8 0
3 years ago
Please help me i have this due tommorrow!!!
Ronch [10]
I found this!! maybe this will help :)

8 0
2 years ago
A test piolot flies with an acceleration of 5
Colt1911 [192]

On Earth, 1 g = 9.8 m/s² .

5 g = 5 · (9.8 m/s²)

5 g = 49 m/s²

5 0
3 years ago
A projectile is launched straight up from a height of 960 feet with an initial velocity of 64 ft/sec. Its height at time t is h(
Natasha2012 [34]

Answer:

a) t=2s

b) h_{max}=1024ft

c) v_{y}=-256ft/s

Explanation:

From the exercise we know the initial velocity of the projectile and its initial height

v_{y}=64ft/s\\h_{o}=960ft\\g=-32ft/s^2

To find what time does it take to reach maximum height we need to find how high will it go

b) We can calculate its initial height using the following formula

Knowing that its velocity is zero at its maximum height

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

0=(64ft/s)^2-2(32ft/s^2)(y-960ft)

y=\frac{-(64ft/s)^2-2(32ft/s^2)(960ft)}{-2(32ft/s^2)}=1024ft

So, the projectile goes 1024 ft high

a) From the equation of height we calculate how long does it take to reach maximum point

h=-16t^2+64t+960

1024=-16t^2+64t+960

0=-16t^2+64t-64

Solving the quadratic equation

t=\frac{-b±\sqrt{b^{2}-4ac}}{2a}

a=-16\\b=64\\c=-64

t=2s

So, the projectile reach maximum point at t=2s

c) We can calculate the final velocity by using the following formula:

v_{y}^{2}=v_{o}^{2}+2g(y-y_{o})

v_{y}=±\sqrt{(64ft/s)^{2}-2(32ft/s^2)(-960ft)}=±256ft/s

Since the projectile is going down the velocity at the instant it reaches the ground is:

v=-256ft/s

5 0
2 years ago
1. A 2.5 kg led projector is launched as a projectile off a tall building. At one point, as it
spin [16.1K]

Answer:

Explanation:

I got everything but i. Don't know why but it's eluding me. So let's do everything but that.

a. PE = mgh so

   PE = (2.5)(98)(14) and

   PE = 340 J

b. KE=\frac{1}{2}mv^2 so

   KE=\frac{1}{2}(2.5)(14)^2 and

   KE = 250 J

c. TE = KE + PE so

   TE = 340 + 250 and

   TE = 590 J

d. PE at 8.7 m:

   PE = (2.5)(9.8)(8.7) and

   PE = 210 J

e. The KE at the same height:

   TE = KE + PE and

   590 = KE + 210 so

   KE = 380 J

f. The velocity at that height:

   380=\frac{1}{2}(2.5)v^2 and

   v=\sqrt{\frac{2(380)}{2.5} } so

   v = 17 m/s

g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:

   590 = KE + PE and

   PE = (2.5)(9.8)(11.6) so

   PE = 280 then

   590 = KE + 280 so

   KE = 310 then

   310=\frac{1}{2}(2.5)v^2 and

   v=\sqrt{\frac{2(310)}{2.5} } so

   v = 16 m/s

h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:

   v=v_0+at and

   26 = 0 + 9.8t and

   26 = 9.8t so the time at 26 m/s is

   t = 2.7 seconds. Now we use that in the equation for displacement:

   Δx = v_0t+\frac{1}{2}at^2 and filling in the time the object was at 26 m/s:

   Δx = 0t + \frac{1}{2}(-9.8)2.7)^2 so

   Δx = 36 m

i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.

4 0
2 years ago
Other questions:
  • Explain two reason why SI is easier than the English System.
    6·1 answer
  • You shake a bottle of soda and take off the cap. If the soda shoots out of the
    14·1 answer
  • A small sandbag is dropped from rest from a hovering hot-air balloon. (assume the positive direction is upward.) (a) after 1.5 s
    10·1 answer
  • What would happen if the sun suddenly became a black hole without changing its mass?
    8·1 answer
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    6·1 answer
  • A motor attached to a 120 V/60 Hz power line draws an 8.40 A current. Its average energy dissipation is 850 W. How much series c
    10·1 answer
  • When a potential difference of 10 V is placed across a certain solid cylindrical resistor, the current through it is 2 A. If the
    12·1 answer
  • If a person attempts to read their e-mail while they are riding the bus, they are _______.
    7·1 answer
  • Visible light falls into wavelength ranges of 400-700 nm, for which 1 m = 1 × 10 9 nm . The energy and wavelength of light are r
    11·1 answer
  • A car crashes into a wall with an impulse of 40,000 kg.m/s. The collision took 2 seconds. How much force did the wall exert?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!