Answer:
x = −6
Explanation:
5x + 7y = -23
Y = -2x - 11
Substitute -2x - 11 for y in 5x + 7y = -23
5x + 7(−2x − 11) = −23
Simplify both sides of the equation
5x + 7(−2x − 11) = −23
5x + (7)(−2x ) + (7)(−11) = −23 (Distribute)
5x + −14x + −77 = −23
(5x + −14x) + (−77) = −23 (Combine Like Terms)
−9x + −77 = −23
−9x − 77 = −23
Add 77 to both sides
−9x − 77 + 77 = −23 + 77
−9x = 54
Divide both sides by -9
−9x / -9 = 54 / -9
x = -6
Answer:
(A)∠A = 82.2°,∠C = 62.8°, c = 17.1
Step-by-step explanation:
In Triangle ABC
∠B=35°
a=19
b=11
Using Law of SInes
![\dfrac{a}{\sin A} =\dfrac{b}{\sin B} \\\dfrac{19}{\sin A} =\dfrac{11}{\sin 35^\circ} \\11*\sin A=19*\sin 35^\circ\\\sin A=(19*\sin 35^\circ) \div 11\\A= \arcsin [(19*\sin 35^\circ) \div 11]\\A=82.2^\circ](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7Bb%7D%7B%5Csin%20B%7D%20%5C%5C%5Cdfrac%7B19%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7B11%7D%7B%5Csin%2035%5E%5Ccirc%7D%20%5C%5C11%2A%5Csin%20A%3D19%2A%5Csin%2035%5E%5Ccirc%5C%5C%5Csin%20A%3D%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5C%5CA%3D%20%5Carcsin%20%5B%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5D%5C%5CA%3D82.2%5E%5Ccirc)
Now:
![\angle A+\angle B+\angle C=180^\circ\\35^\circ+82.2^\circ+\angle C=180^\circ\\\angle C=180^\circ-[35^\circ+82.2^\circ]\\\angle C=62.8^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C35%5E%5Ccirc%2B82.2%5E%5Ccirc%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C%5Cangle%20C%3D180%5E%5Ccirc-%5B35%5E%5Ccirc%2B82.2%5E%5Ccirc%5D%5C%5C%5Cangle%20C%3D62.8%5E%5Ccirc)
Using Law of Sines

Therefore:
∠A = 82.2°,∠C = 62.8°, c = 17.1
The correct option is A.
I'm sorry but I don't see any terms, when I figure out how to put a photo in, I will help you with it.
A=1 *this is the starting point
1,6,11,16,21,26,31,36,41,46,51,56,
You can use greatest common factor(gcf)
list the factors of 18 and 30.
18- 1, 2, 3, 6, 9, 18
30- 1, 2, 3, 5, 6, 10, 15, 30
now the factor that is greatest is 6.
this mean you can use the largest square tile of 6in by 6in without overlap or cutting.