The derivative of the function g(x) as given in the task content by virtue of the Fundamental theorem of calculus is; g'(x) = √2 ln(t) dt = 1.
<h3>What is the derivative of the function g(x) by virtue of the Fundamental theorem of calculus as given in the task content?</h3>
g(x) = Integral; √2 ln(t) dt (with the upper and lower limits e^x and 1 respectively).
Since, it follows from the Fundamental theorem of calculus that given an integral where;
Now, g(x) = Integral f(t) dt with limits a and x, it follows that the differential of g(x);
g'(x) = f(x).
Consequently, the function g'(x) which is to be evaluated in this scenario can be determined as:
g'(x) =
= 1
The derivative of the function g(x) as given in the task content by virtue of the Fundamental theorem of calculus is; g'(x) = √2 ln(t) dt = 1.
Read more on fundamental theorem of calculus;
brainly.com/question/14350153
#SPJ1
Answer:
C. -n - 2
Step-by-step explanation:
Since there are no parenthesis for 3n + 2, you only distribute the 2 to (-2n - 1):
3n - 4n - 2
-n - 2
Check :
brainly.com/question/5023362 To see what are the factors use, we write each of the numbers, as product of prime factors, as shown in the picture
As we can see, the 4 factors used to produce the numbers in the list are {2, 3, 5, 7}
Answer: {2, 3, 5, 7}
Answer:
7
Step-by-step explanation:

I hope it helped you
For number 15 and 16, you just have to find the absolute difference between the two points along the calibration of the protractor.
15. ∠BXC = |B - C| = |140° - 110°| = 30°
16. ∠BXE = |B - E| = |140° - 30°| = 110°
For numbers 20 and 21, apply the Angle Addition Postulate. This is when you add the individual interior angles to equate to the total angle.
20. ∠PQS = ∠PQR + ∠RQS
112° = 72°+ 10x°
x = 4
21. ∠KLM = ∠KLN + ∠NLM
135° = 47°+ 16y°
y = 5.5