1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
3 years ago
9

PLEASE HELP ASAP!!!!!!!!!!

Mathematics
2 answers:
zheka24 [161]3 years ago
8 0

the point in the graph that represents the equilibrium price is A

anygoal [31]3 years ago
4 0
I think its A? Fjdndidndidn
You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%20-%20%284x%20-%2015%29%20%5Cgeqslant%20-%209%283%20%2B%20x%29" id="TexFormula1" title=" - (4
Kay [80]

- (4x - 15) \geqslant  - 9(3 + x) \\  - 4x + 15 \geqslant  - 27 - 9x \\  - 4x + 9x \geqslant  - 27 - 15 \\ 5x \geqslant  - 42 \\ x \geqslant  - 8 \dfrac{2}{5}


21 + x > 2( - 2 - 5x) + 6x \\ 21 + x >  - 4 - 10x + 6x \\ x + 10x - 6x >  - 4 - 21 \\ 5x >  - 25 \\ x >  - 5

Hope this helps. - M
5 0
3 years ago
I need help on this question plz
olasank [31]

It is convenient to follow directions. Create a chart with activities as column headings. Since the data is divided according to gender, you would put gender on the row headings. Fill in the given numbers (black), and make the totals come out (blue).

The numbers in the row total column are exactly that: the total of the numbers in the row. (A spreadsheet can do the actual addition or subtraction for you.)

4 0
3 years ago
Find the total lateral area of the following
maxonik [38]

Answer:

15π cm²

Step-by-step explanation:

The total lateral area of a cone

= πr√h² + r²

= √h² + r² = l

h = Height = 4cm

r = radius = 3cm

Hence:

= π × 3 √4² + 3²

= 3π × √16 + 9

= 3π × √25

= 3π × 5

= 15π cm²

7 0
3 years ago
Five points are plotted on the number line which point is opposite of point E
Maru [420]

Answer:

Um, can you add the picture of the number line?

3 0
3 years ago
Other questions:
  • a pizza is 16 inches in diameter. each square inch of pizza has 6 calories. if each slice contains about 144 calories, how many
    6·1 answer
  • f military time is 0145, what time is it on a regular clock? A. 12:45 P.M. B. 1:45 P.M. C. 1:45 A.M. D. 12:45 A.M.
    11·1 answer
  • How to write numbers in two other forms ?<br><br> 6,007,200
    12·1 answer
  • I REALLY NEED HELP, PLEASE HELP !! WORTH 30 POINTS !!
    5·1 answer
  • Please help me with my problem. I would really appreciate it
    11·1 answer
  • Cierra says that 5/6 times 5/6 equals 25/6 is that true?
    10·1 answer
  • What is the volume of the rectangular prism?
    12·2 answers
  • 30 points high school geometry question
    8·2 answers
  • NEED ASAP!! PlsssSSS WILL GIVE BRAINIEST!!
    9·2 answers
  • Perform the indicated operations. Write the answer in standard form, a+bi.<br> -4 + 4i / -3-6i
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!