Answer:
18,12
Step-by-step explanation:
W (1, -2), X (7,-2), Y (7,-6), and Z (1, -6).
To dilate the shape, multiply it's coordinates by the scale factor.
W'(3,-6), X'(21,-6), Y'(21,-18), Z(3, -18)
The distance formula: ![d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D)
plug W'(3,-6) and X'(21,-6) in to get the length
![\sqrt{(3-21)^2+(-6-(-6))^2}=\sqrt{(-18)^2 +0^2}=\sqrt{324} =18](https://tex.z-dn.net/?f=%5Csqrt%7B%283-21%29%5E2%2B%28-6-%28-6%29%29%5E2%7D%3D%5Csqrt%7B%28-18%29%5E2%20%2B0%5E2%7D%3D%5Csqrt%7B324%7D%20%3D18)
plug X(21,-6) and Y(21,-18) to get the width
![\sqrt{(7-7)^2+(-2-(-6))^2}=\sqrt{0^2 +4^2}=\sqrt{16} =4](https://tex.z-dn.net/?f=%5Csqrt%7B%287-7%29%5E2%2B%28-2-%28-6%29%29%5E2%7D%3D%5Csqrt%7B0%5E2%20%2B4%5E2%7D%3D%5Csqrt%7B16%7D%20%3D4)
![\sqrt{(21-21)^2+(-6-(-18))^2}=\sqrt{0^2 +12^2}=\sqrt{144} =12](https://tex.z-dn.net/?f=%5Csqrt%7B%2821-21%29%5E2%2B%28-6-%28-18%29%29%5E2%7D%3D%5Csqrt%7B0%5E2%20%2B12%5E2%7D%3D%5Csqrt%7B144%7D%20%3D12)