Answer:
Terms (Variables) = x , d . Their corresponding coefficients = n^2 , 1/2 . Constant = 6
Step-by-step explanation:
6 + n x n + 1/2d
6 + n^2 x + 1/2d
Terms (Variables) = x , d . Their corresponding coefficients = n^2 , 1/2 . Constant = 6
(B) but if there is another answers let me see cuz all i see is a and b
Answer:

Since the angle between the two vectors is not 180 or 0 degrees we can conclude that are not parallel
And the anfle is approximately 
Step-by-step explanation:
For this case first we need to calculate the dot product of the vectors, and after this if the dot product is not equal to 0 we can calculate the angle between the two vectors in order to see if there are parallel or not.
a=[1,2,-2], b=[4,0,-3,]
The dot product on this case is:

Since the dot product is not equal to zero then the two vectors are not orthogonal.
Now we can calculate the magnitude of each vector like this:


And finally we can calculate the angle between the vectors like this:

And the angle is given by:

If we replace we got:

Since the angle between the two vectors is not 180 or 0 degrees we can conclude that are not parallel
And the anfle is approximately 
Its may be A or C
i am not sure just try to help
Distance from a point to a line (Coordinate Geometry)
Method 1: When the line is vertical or horizontal
, the distance from a point to a vertical or horizontal line can be found by the simple difference of coordinates
. Finding the distance from a point to a line is easy if the line is vertical or horizontal. We simply find the difference between the appropriate coordinates of the point and the line. In fact, for vertical lines, this is the only way to do it, since the other methods require the slope of the line, which is undefined for evrtical lines.
Method 2: (If you're looking for an equation) Distance = | Px - Lx |
Hope this helps!