1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna [14]
3 years ago
5

Identify the terms, coefficients, and constants in the expression. 8x+7y^2

Mathematics
1 answer:
alexandr1967 [171]3 years ago
5 0

Answer:

8x+7y^2

Step-by-step explanation:

You might be interested in
Mimi has 16 more bouncy balls than Leah
Mnenie [13.5K]
Let X: Leah
Answer: X+16
5 0
4 years ago
Read 2 more answers
Find the surface area of this prism <br> 3cm <br> 7cm<br> 5cm
k0ka [10]

Answer:

105cm

Step-by-step explanation:

please click crown below my answer.

8 0
2 years ago
The value of a bank account, y, increases by 5% each year, x. If the initial value of the account is $800, which equation repres
Mashcka [7]

Answer:

Equation to represent the situation = 800=Y(1.05)^X

Step-by-step explanation:

Given:

Initial investment = Y

Growth rate (r) = 5% = 5 / 100 = 0.05

Number of year (n) = X year

Amount after X year = $800

Find:

Equation to represent the situation:

Computation:

Amount = Initial\ investment (1+r)^n\\\\800 = Y (1+0.05)^X\\\\800 = Y (1.05)^X\\\\

Equation to represent the situation = 800=Y(1.05)^X

6 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
⚠️⚠️⚠️⚠️⚠️ 15 points
Helga [31]

Answer:

The answer is (4x-1)·(3x+2)

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Plot the following wing points on a number line 2/3, 1/6 &amp; 4/10
    5·1 answer
  • Why should you look out for a pig that knows karate?
    12·2 answers
  • Please help!!! I will give brainliest.
    12·1 answer
  • 3x + 4y = 27 5x - 3y = 16
    11·1 answer
  • What is the answer for this 10(2x-3)-8(3x+10)=6x+30
    5·1 answer
  • Urgent!
    8·2 answers
  • X - y = 6
    8·1 answer
  • A vcr and tv were bought for 8000 each. The shopkeeper made a loss of 4 per cent on vcr and 8 per cent prophit on the tv. Find t
    12·1 answer
  • A giraffe can run up to 46.93 feet per second. How far could a giraffe run in 1 minute?
    13·1 answer
  • Chords AC and DB intersect at point E. Select all pairs of angles that must be congruent.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!