<h3>
Answer: C) 0</h3>
================================================
Explanation:
If points F and E are the midpoints of segment VU and segment ST respectively, then segment FE is the midsegment of the trapezoid. The midsegment is parallel to the bases, and the midsegment's length is found by adding up the bases VS and UT, then dividing by 2.
(VS + UT)/2 = FE
(29 + x+17)/2 = 23 ... plug in given info; isolate x
(x+46)/2 = 23
x+46 = 23*2 ... multiply both sides by 2
x+46 = 46
x = 46-46 ... subtract 46 from both sides
<h3>
x = 0</h3>
The plane figure formed by the ground, the guy wire, and the tree is a right triangle with the hypotenuse equal to length of the guy wire. The angle given is an angle adjacent to 3.5 ft. Therefore, the most suitable trigonometric function for this is,
cos (50°) = adjacent / hypotenuse
cos 50° = 3.5 ft / hypotenuse
The value of the hypotenuse is 5.445 ft.
Hence, the length of the guy wire is approximately 5.445 ft.
This is rationalising the denominator of an imaginary fraction. We want to remove all i's from the denominator.
To do this, we multiply the fraction by 1. However 1 can be expressed in an infinite number of ways. For example, 1 = 2/2 = 3/3 = 4n^2 / 4n^2 (assuming n is not zero!). Let's express 1 as the complex conjugate of the denominator, divided by the complex conjugate of the denominator.
The complex conjugate of (3 - 2i) is (3 + 2i). Then do what I just said:
4/(3-2i) * (3+2i)/(3+2i) = 4(3+2i)/(3-2i)(3+2i) = (12+8i)/(9-4i^2) = (12+8i)/(9+4) = (12+8i)/13
This is the answer you are looking for. I hope this helps :)
it is c and dont get it wrong