Answer:
called unit rate .
Step-by-step explanation:
Answer:
(1,1)
Step-by-step explanation:
we have
----> equation A
----> equation B
we know that
The solution of the system of equations is the intersection point both graphs
The intersection point both graphs is the point (1,1)
see the given graph
therefore
The solution is the point (1,1)
Remember that
if a ordered pair is a solution of a system of equations then the ordered pair must satisfy both equations of the system
<u><em>Verify</em></u>
Substitute the value of x=1 and y=1 in each equation and analyze the result
<em>Equation A</em>

---> is true
so
The ordered pair satisfy the equation A
<em>Equation B</em>
---> is true
so
The ordered pair satisfy the equation B
therefore
The ordered pair (1,1) is a solution of the system because satisfy both equations
Hello My Dear Friend!
<span>
We move all terms to the left:</span>

<span>
We add all the numbers together, and all the variables</span>

<span>
We move all terms containing y to the left, all other terms to the right</span>


I Hope my answer has come to your Help. Thank you for posting your question here in

We hope to answer more of your questions and inquiries soon.
Have a nice day ahead! :)
<span>

</span>
Answer:
The expectation of the policy until the person reaches 61 is of -$4.
Step-by-step explanation:
We have these following probabilities:
0.954 probability of a loss of $50.
1 - 0.954 = 0.046 probability of "earning" 1000 - 50 = $950.
Find the expectation of the policy until the person reaches 61.
Each outcome multiplied by it's probability, so:

The expectation of the policy until the person reaches 61 is of -$4.
Well it technically won’t be be because it isn’t b