Answer:
<h2><em><u>-9</u></em></h2>
Step-by-step explanation:

<em><u>By</u></em><em><u> </u></em><em><u>putting</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>values</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>-4</u></em><em><u> </u></em><em><u>,</u></em><em><u> </u></em><em><u>b</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>9</u></em><em><u>,</u></em>



= -(9)
= <em><u>-9 (Ans)</u></em>
Can you provide me additional stuff so that i may try to help you?
Answer:
<h3>
f(x) = -²/₄₉(x - 2)² + 4</h3>
Step-by-step explanation:
The vertex form of an equation of the parabola:
f(x) = a(x - p)² + q
vertex is (2, 4) so p = 2, q = 4
so:
f(x) = a(x - 2)² + 4
the parabola goes through the point (-5, 2) so x=-5, f(x)=2
2 = a(-5-2)² + 4
- 2 = a(49)
a = -²/₄₉
Therefore the equation of the parabola in vertex form:
f(x) = -²/₄₉(x - 2)² + 4
72 - 55 = 17
(17/55) x 100
= 1700/55
= 30.90909...
= 30.9% (3sf)