We know that
If the scalar product of two vectors<span> is zero, both vectors are </span><span>orthogonal
</span><span>A. (-2,5)
</span>(-2,5)*(1,5)-------> -2*1+5*5=23-----------> <span>are not orthogonal
</span><span>B. (10,-2)
</span>(10,-2)*(1,5)-------> 10*1-2*5=0-----------> are orthogonal
<span>C. (-1,-5)
</span>(-1,-5)*(1,5)-------> -1*1-5*5=-26-----------> are not orthogonal
<span>D. (-5,1)
</span>(-5,1)*(1,5)-------> -5*1+1*5=0-----------> are orthogonal
the answer is
B. (10,-2) and D. (-5,1) are orthogonal to (1,5)
Answer:
The "check your answer" probably means check your answer by graphing.
Step-by-step explanation:
Answer:
x = 181 and y = 97
Step-by-step explanation:
let called the first number is x
the second number would be called y
We are given that:
x + y = 278 (1)
x = y + 84 (2)
Let change x in (2) into (1):
y + 84 + y = 278
2y + 84 = 278
Subtract 84 from both side, we got:
2y + 84 - 84 = 278 - 84
2y + 0 = 194
Divide both side by 2, we got:
2y / 2 = 194 / 2
y = 97
Because y = 97 and x + y = 278 so x would equal:
x + 97 = 278
Subtract 97 from both side, we got:
x + 97 - 97 = 278 - 97
x + 0 = 181
x = 181 and y = 97
Hope this helped :3
Pretty sure the answer is 29/20 or 1 9/20. You get this by find the common denominator , 60, and then adding the number all together and simplifying