Answer:
y = 3
Explanation:
Any equation of a line that is written as x = # (meaning x equaling whatever number) is vertical on the graph. Therefore, x = -1 is a vertical line. And since x equals -1, all the points on the graph must have an x-value of -1.
We need to find a line that is perpendicular to it - and what would be perpendicular to a vertical line would be a horizontal line. Horizontal lines are represented by the equation y = # (meaning y equaling whatever number). Whatever number is written there is the y-value of all the points the horizontal line intersects.
We know that the line has to pass through (2,3). Therefore, take the y-value of that point - which is 3 - giving us y = 3.
Answer:
Option C .
Step-by-step explanation:
We would like to solve the below <u>quadratic </u><u>equation</u><u> </u>,

Step 1 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>


Step 2 : <u>F</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>R</u><u>H</u><u>S</u><u> </u><u>:</u><u>-</u>



Step 3 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>e</u><u>a</u><u>c</u><u>h</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>



<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u><u>.</u>