Answer:
0.1333 = 13.33% probability that bridge B was used.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Arrives home by 6 pm
Event B: Bridge B used.
Probability of arriving home by 6 pm:
75% of 1/3(Bridge A)
60% of 1/6(Bridge B)
80% of 1/2(Bridge C)
So

Probability of arriving home by 6 pm using Bridge B:
60% of 1/6. So

Find the probability that bridge B was used.

0.1333 = 13.33% probability that bridge B was used.
Step-by-step explanation:
2x-12x+36 =90
-10x + 36 = 90
-10x =54
x = - 5.4
Minus 3 from the 3 and the 18
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if 
Example of a second order nonlinear ODE:

(D) Example of a nonlinear fourth order ODE:
![K^4(x) - \beta f [x, k(x)] = 0](https://tex.z-dn.net/?f=K%5E4%28x%29%20-%20%5Cbeta%20f%20%5Bx%2C%20k%28x%29%5D%20%3D%200)