Answer:
x = 22.1°
Step-by-step explanation:
Angle ∠A = 41.124° = 41°7'26" = 0.71775 rad
Angle ∠B = 22.075° = 22°4'31" = 0.38528 rad
Angle ∠C = 116.801° = 116°48'4" = 2.03856 rad
Answer:
(a) The average cost function is 
(b) The marginal average cost function is 
(c) The average cost approaches to 95 if the production level is very high.
Step-by-step explanation:
(a) Suppose
is a total cost function. Then the average cost function, denoted by
, is

We know that the total cost for making x units of their Senior Executive model is given by the function

The average cost function is

(b) The derivative
of the average cost function, called the marginal average cost function, measures the rate of change of the average cost function with respect to the number of units produced.
The marginal average cost function is

(c) The average cost approaches to 95 if the production level is very high.
![\lim_{x \to \infty} (\bar{C}(x))=\lim_{x \to \infty} (95+\frac{230000}{x})\\\\\lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\\\=\lim _{x\to \infty \:}\left(95\right)+\lim _{x\to \infty \:}\left(\frac{230000}{x}\right)\\\\\lim _{x\to a}c=c\\\lim _{x\to \infty \:}\left(95\right)=95\\\\\mathrm{Apply\:Infinity\:Property:}\:\lim _{x\to \infty }\left(\frac{c}{x^a}\right)=0\\\lim_{x \to \infty} (\frac{230000}{x} )=0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cbar%7BC%7D%28x%29%29%3D%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%2895%2B%5Cfrac%7B230000%7D%7Bx%7D%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7D%5Cleft%5Bf%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29%5Cright%5D%3D%5Clim%20_%7Bx%5Cto%20a%7Df%5Cleft%28x%5Cright%29%5Cpm%20%5Clim%20_%7Bx%5Cto%20a%7Dg%5Cleft%28x%5Cright%29%5C%5C%5C%5C%3D%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%2B%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%28%5Cfrac%7B230000%7D%7Bx%7D%5Cright%29%5C%5C%5C%5C%5Clim%20_%7Bx%5Cto%20a%7Dc%3Dc%5C%5C%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%5C%3A%7D%5Cleft%2895%5Cright%29%3D95%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3AInfinity%5C%3AProperty%3A%7D%5C%3A%5Clim%20_%7Bx%5Cto%20%5Cinfty%20%7D%5Cleft%28%5Cfrac%7Bc%7D%7Bx%5Ea%7D%5Cright%29%3D0%5C%5C%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%28%5Cfrac%7B230000%7D%7Bx%7D%20%29%3D0)

F(x)=x^2+2x+1 & g(x)=3(x+1)^2
now, f(x)+g(x)
=x^2+2x+1+3(x+1)^2
=x^2+2x+1+3(x^2+2x+1)
=x^2+2x+1+3x^2+6x+3
=4x^2+8x+4<===answer(c)
next:
f(x)=x^2-1 & g(x)=x+3
now, f(g(x))=(x+3)^ -1
=x^2+6x+9-1
=x^2+6x+8<====answer(b)
i solve two of ur problems.
now try the 3rd one that is similar to no. 1
and try the last two urself.
Answer:
You need more information. But typically multiplly by 100 so .1 would be 10 %
Step-by-step explanation: