Answer:
a) P(X > 10) = 0.6473
b) P(X > 20) = 0.4190
c) P(X < 30) = 0.7288
d) x = 68.87
Step-by-step explanation:
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
![f(x) = \mu e^{-\mu x}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cmu%20e%5E%7B-%5Cmu%20x%7D)
In which
is the decay parameter.
The probability that x is lower or equal to a is given by:
![P(X \leq x) = \int\limits^a_0 {f(x)} \, dx](https://tex.z-dn.net/?f=P%28X%20%5Cleq%20x%29%20%3D%20%5Cint%5Climits%5Ea_0%20%7Bf%28x%29%7D%20%5C%2C%20dx)
Which has the following solution:
![P(X \leq x) = 1 - e^{-\mu x}](https://tex.z-dn.net/?f=P%28X%20%5Cleq%20x%29%20%3D%201%20-%20e%5E%7B-%5Cmu%20x%7D)
The probability of finding a value higher than x is:
![P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}](https://tex.z-dn.net/?f=P%28X%20%3E%20x%29%20%3D%201%20-%20P%28X%20%5Cleq%20x%29%20%3D%201%20-%20%281%20-%20e%5E%7B-%5Cmu%20x%7D%29%20%3D%20e%5E%7B-%5Cmu%20x%7D)
Mean equal to 23.
This means that ![m = 23, \mu = \frac{1}{23} = 0.0435](https://tex.z-dn.net/?f=m%20%3D%2023%2C%20%5Cmu%20%3D%20%5Cfrac%7B1%7D%7B23%7D%20%3D%200.0435)
(a) P(X >10)
![P(X > 10) = e^{-0.0435*10} = 0.6473](https://tex.z-dn.net/?f=P%28X%20%3E%2010%29%20%3D%20e%5E%7B-0.0435%2A10%7D%20%3D%200.6473)
So
P(X > 10) = 0.6473
(b) P(X >20)
![P(X > 20) = e^{-0.0435*20} = 0.4190](https://tex.z-dn.net/?f=P%28X%20%3E%2020%29%20%3D%20e%5E%7B-0.0435%2A20%7D%20%3D%200.4190)
So
P(X > 20) = 0.4190
(c) P(X <30)
![P(X \leq 30) = 1 - e^{-0.0435*30} = 0.7288](https://tex.z-dn.net/?f=P%28X%20%5Cleq%2030%29%20%3D%201%20-%20e%5E%7B-0.0435%2A30%7D%20%3D%200.7288)
So
P(X < 30) = 0.7288
(d) Find the value of x such that P(X > x) = 0.05
So
![P(X > x) = e^{-\mu x}](https://tex.z-dn.net/?f=P%28X%20%3E%20x%29%20%3D%20e%5E%7B-%5Cmu%20x%7D)
![0.05 = e^{-0.0435x}](https://tex.z-dn.net/?f=0.05%20%3D%20e%5E%7B-0.0435x%7D)
![\ln{e^{-0.0435x}} = \ln{0.05}](https://tex.z-dn.net/?f=%5Cln%7Be%5E%7B-0.0435x%7D%7D%20%3D%20%5Cln%7B0.05%7D)
![-0.0435x = \ln{0.05}](https://tex.z-dn.net/?f=-0.0435x%20%3D%20%5Cln%7B0.05%7D)
![x = -\frac{\ln{0.05}}{0.0435}](https://tex.z-dn.net/?f=x%20%3D%20-%5Cfrac%7B%5Cln%7B0.05%7D%7D%7B0.0435%7D)
![x = 68.87](https://tex.z-dn.net/?f=x%20%3D%2068.87)