1. 4
2.4
3.3
4.2
5.2
6.what after the plus
7.3
8.
Answer:
△ABX ≅ △ACY, by reason that they are equal and congruent to each other.
I hope this answers your question.
Answer: Our required probability is 0.83.
Step-by-step explanation:
Since we have given that
Number of dices = 2
Number of fair dice = 1
Probability of getting a fair dice P(E₁) = 
Number of unfair dice = 1
Probability of getting a unfair dice P(E₂) = 
Probability of getting a 3 for the fair dice P(A|E₁)= 
Probability of getting a 3 for the unfair dice P(A|E₂) = 
So, we need to find the probability that the die he rolled is fair given that the outcome is 3.
So, we will use "Bayes theorem":

Hence, our required probability is 0.83.
Answer:
Answer: C) The mean will increase more than the median, but both will increase.
Step-by-step explanation:
I got it right on the test review.
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)