Thousandths hope it helps
Answer:
![\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-30%2622%268%5C%5C-4%26-4%2616%5C%5C30%26-28%2618%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given
![A = \left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%269%262%5C%5C10%26-10%262%5C%5C-5%266%26-5%5Cend%7Barray%7D%5Cright%5D)
![B = \left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]](https://tex.z-dn.net/?f=B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-1%26-1%5C%5C6%26-4%26-3%5C%5C-10%2610%26-7%5Cend%7Barray%7D%5Cright%5D)
Required
2A - 4B
To solve 2A - 4B, we first multiply matrix A by 2 and matrix B by 4
So, if
![A = \left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%269%262%5C%5C10%26-10%262%5C%5C-5%266%26-5%5Cend%7Barray%7D%5Cright%5D)
![2A = 2 *\left[\begin{array}{ccc}-1&9&2\\10&-10&2\\-5&6&-5\end{array}\right]](https://tex.z-dn.net/?f=2A%20%3D%202%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%269%262%5C%5C10%26-10%262%5C%5C-5%266%26-5%5Cend%7Barray%7D%5Cright%5D)
![2A = \left[\begin{array}{ccc}-2&18&4\\20&-20&4\\-10&12&-10\end{array}\right]](https://tex.z-dn.net/?f=2A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2618%264%5C%5C20%26-20%264%5C%5C-10%2612%26-10%5Cend%7Barray%7D%5Cright%5D)
If
![B = \left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]](https://tex.z-dn.net/?f=B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-1%26-1%5C%5C6%26-4%26-3%5C%5C-10%2610%26-7%5Cend%7Barray%7D%5Cright%5D)
then
![4B = 4*\left[\begin{array}{ccc}7&-1&-1\\6&-4&-3\\-10&10&-7\end{array}\right]](https://tex.z-dn.net/?f=4B%20%3D%204%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-1%26-1%5C%5C6%26-4%26-3%5C%5C-10%2610%26-7%5Cend%7Barray%7D%5Cright%5D)
![4B = \left[\begin{array}{ccc}28&-4&-4\\24&-16&-12\\-40&40&-28\end{array}\right]](https://tex.z-dn.net/?f=4B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D28%26-4%26-4%5C%5C24%26-16%26-12%5C%5C-40%2640%26-28%5Cend%7Barray%7D%5Cright%5D)
So; 2A - 4B becomes
![\left[\begin{array}{ccc}-2&18&4\\20&-20&4\\-10&12&-10\end{array}\right] - \left[\begin{array}{ccc}28&-4&-4\\24&-16&-12\\-40&40&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2618%264%5C%5C20%26-20%264%5C%5C-10%2612%26-10%5Cend%7Barray%7D%5Cright%5D%20-%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D28%26-4%26-4%5C%5C24%26-16%26-12%5C%5C-40%2640%26-28%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}-2-28&18-(-4)&4-(-4)\\20-24&-20-(-16)&4-(-12)\\-10-(-40)&12-40&-10-(-28)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2-28%2618-%28-4%29%264-%28-4%29%5C%5C20-24%26-20-%28-16%29%264-%28-12%29%5C%5C-10-%28-40%29%2612-40%26-10-%28-28%29%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}-30&18+4&4+4\\20-24&-20+16&4+12\\-10+40&12-40&-10+28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-30%2618%2B4%264%2B4%5C%5C20-24%26-20%2B16%264%2B12%5C%5C-10%2B40%2612-40%26-10%2B28%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-30%2622%268%5C%5C-4%26-4%2616%5C%5C30%26-28%2618%5Cend%7Barray%7D%5Cright%5D)
Hence, 2A - 4B is equivalent to
![\left[\begin{array}{ccc}-30&22&8\\-4&-4&16\\30&-28&18\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-30%2622%268%5C%5C-4%26-4%2616%5C%5C30%26-28%2618%5Cend%7Barray%7D%5Cright%5D)
Answer:
52°
Step-by-step explanation:
(I'm assuming lines JK and HI are parallel)
∠JKA and ∠HIA are corresponding so they are congruent.
Therefore, since ∠JKA is 62, so is ∠HIA. Then knowing the sum of interior angles of a triangle always must be 180, you can just do the math to get 52° as the remaining angle.
66° + 62° + ∠x = 180
∠x = 52°
Answer:
7/15
Step-by-step explanation:
<em>No. of green marbles in the bag= 7</em>
<em>No. of blue marbles in the bag= 8</em>
<em>Total no. of marbles in the bag= 7+8=15</em>
As we know that,
Probability( of a random event A)= 
Hence in this case,
Favourable np. of elementary events (green marbles)=7
Total no. of elementary events (Total no. of marbles in the bag)= 15
Hence, Probability of picking a green marble from the bag=
Answer:
390
Step-by-step explanation: