Answer:
The y-intercept of this line is -8.
let's firstly convert the mixed fractions to improper fractions, and then subtract.
![\bf \stackrel{mixed}{5\frac{1}{4}}\implies \cfrac{5\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{21}{4}}~\hfill \stackrel{mixed}{3\frac{2}{3}}\implies \cfrac{3\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{11}{3}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{21}{4}-\cfrac{11}{3}\implies \stackrel{\textit{we'll use the LCD of 12}}{\cfrac{(3)21-(4)11}{12}}\implies \cfrac{63-44}{12}\implies \cfrac{19}{12}\implies 1\frac{7}{12}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B5%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B5%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B21%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B11%7D%7B3%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B21%7D%7B4%7D-%5Ccfrac%7B11%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20the%20LCD%20of%2012%7D%7D%7B%5Ccfrac%7B%283%2921-%284%2911%7D%7B12%7D%7D%5Cimplies%20%5Ccfrac%7B63-44%7D%7B12%7D%5Cimplies%20%5Ccfrac%7B19%7D%7B12%7D%5Cimplies%201%5Cfrac%7B7%7D%7B12%7D)
Answer:
Since in your question you don't specify the coordinates of any of them, the best answer would be (-x, y) since that is the formula to find the reflection over the y-axis.
Answer:
B
Step-by-step explanation:
Answer:
1 i.e. n
Step-by-step explanation: