Answer:

Step-by-step explanation:
Given that:

where;
the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)
As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)


![\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( \dfrac{(1-z)^3}{3} \ y + \dfrac {(1-z)y^3)}{3}] ^{1-x}_{0}](https://tex.z-dn.net/?f=%5Ciiint_W%20%28x%5E2%2By%5E2%29%20%5C%20dx%20%5C%20dy%20%5C%20dz%20%3D%20%5Cint%20%5E1_0%20%20%5C%20dz%20%5C%20%20%28%20%5Cdfrac%7B%281-z%29%5E3%7D%7B3%7D%20%5C%20y%20%2B%20%5Cdfrac%20%7B%281-z%29y%5E3%29%7D%7B3%7D%5D%20%5E%7B1-x%7D_%7B0%7D)




Answer:
x=-1 y=1/2
Step-by-step explanation:
do you need the step by step?
Well a long number 1.0989010989011 thats what u get
Arranging them in ascending order :
21 , 21 , 30 , 44, 49, 52
Median = (30 + 44) ÷ 2
Median = 37 mins
------------------------------------------------------------------
Answer: Median = 37 mins (Answer D)
------------------------------------------------------------------
Answer:
6m√5
Step-by-step explanation:
√(12m)·√(15m) = √(180m²) = √(5·(36m²)) = √5·√(6m)²
= 6m√5 . . . . . . for m ≥ 0