Answer:

Step-by-step explanation:
First, start by converting 4 feet to inches. Note that 1 foot = 12 inches.
Set up a unit converter:

The ft cancel out leaving us with:

Now, we can set up a scale factor...

Answer:
A. As the Study time in increases the Test score increases.
B. Yes, the relation appears linear. The data points lie mostly on a straight and noticeable line.
Answer:
Therefore either a:b = 5:4 or a:b=-5:4
Step-by-step explanation:
ax²-5bx+4a=0
Since the quadratic equation has two real root.
Then b²-4ac>0
Here a= a , b= -5b and c=4a
∴(-5b)²-4.a.4a=0
⇔25b²=16a²
⇔5b=±4a

Therefore either a:b = 5:4 or a:b=-5:4
Remember
a^2-b^2=(a-b)(a+b)
a.
ok so look at last bit
-9x^2+1
can be rearanged into
1-9x^2
look familiar?
1^2-(3x)^2
(1-3x)(1+3x) or
(1-3x)(3x+1)
we nowhave
(3x+1)(5x-4)-(x-12)(3x+1)+(1-3x)(3x+1)
factor out (3x+1)
(3x+1)(5x-4-(x-12)+1-3x)
(3x+1)(2x-3-x+12)
(3x+1)(x+9)
b.
easy
a^2-b^2=(a-b)(a+b)
(4x+5)^2-(2x-3)^2=
(4x+5-(2x-3))(4x+5+2x-3)=
(4x+5-2x+3)(6x+2)=
(2x+8)(6x+2)
we can factor out the 2 from each
(4)(x+2)(3x+1)
a(x)=(3x+1)(x+9)
b(x)=(4)(x+2)(3x+1)
Answer:

Step-by-step explanation:
Given: An angle measures 51 degrees
To find: fraction of a circle by which the angle turn
Solution:
Angle at the centre in a circle is equal to one complete angle i.e., 
Measure of an angle 
Therefore,
Fraction of a circle by which the angle turn = Measure of an angle/ Angle at the centre in a circle 