1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Airida [17]
3 years ago
11

Evaluate the integral. W (x2 y2) dx dy dz; W is the pyramid with top vertex at (0, 0, 1) and base vertices at (0, 0, 0), (1, 0,

0), (0, 1, 0), and (1, 1, 0)
Mathematics
1 answer:
In-s [12.5K]3 years ago
7 0

Answer:

\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = \dfrac{2}{15}}

Step-by-step explanation:

Given that:

\iiint_W (x^2+y^2) \ dx \ dy \ dz

where;

the top vertex = (0,0,1) and the  base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)

As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)

\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^{1-z}_0 \int ^{1-z}_0 (x^2+y^2) \ dx \ dy \  dz

\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^{1-z}_0 ( \dfrac{(1-z)^3}{3}+ (1-z)y^2) dy \ dz

\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0  \ dz \  ( \dfrac{(1-z)^3}{3} \ y + \dfrac {(1-z)y^3)}{3}] ^{1-x}_{0}

\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0  \ dz \  ( \dfrac{(1-z)^4}{3}+ \dfrac{(1-z)^4}{3}) \ dz

\iiint_W (x^2+y^2) \ dx \ dy \ dz =\dfrac{2}{3} \int^1_0 (1-z)^4 \ dz

\iiint_W (x^2+y^2) \ dx \ dy \ dz =- \dfrac{2}{15}(1-z)^5|^1_0

\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = \dfrac{2}{15}}

You might be interested in
Fruit Company A recently released a new applesauce. By the end of its first year, profits on this product amounted to $37,100. T
Anastasy [175]

Answer: 11 year

P(1) = 37,100

P(4) = 58,400

The linear equation (for x ≥ 1)

P(x) = 37,100 + a(x-1)

For x = 4

58,400 = 37,100 + a(4-1)

58,400 - 37,100 = 3a

21300 = 3a

a = 7100

So, the linear equation:

P(x) = 37100 + 7100*(x-1)

P(x) = 37100 + 7100x - 7,100

P(x) = 7100x + 30000

To find when the profit should reach 108100, we can substitute P(x) by 108100.

108100 = 7100x + 30000

108100 - 30000 = 7100x

78100 = 7100x

x = 78100/7100

x = 11

Answer: 11 year

7 0
1 year ago
Find the measure of the missing angles.
Vlada [557]

Answer:

y=145 and x=55

Step-by-step explanation:

Subtract 180 by 35 for y and 90-35 for x. Hope this helps again. Lol

5 0
1 year ago
Using the proportion 2/5=y/100 which equation can be used to find the value of Y​
natulia [17]
2/5 = y/100
40/100 = y/100
Y=40
4 0
3 years ago
Hello people ~
Luden [163]

Cone details:

  • height: h cm
  • radius: r cm

Sphere details:

  • radius: 10 cm

================

From the endpoints (EO, UO) of the circle to the center of the circle (O), the radius is will be always the same.

<u>Using Pythagoras Theorem</u>

(a)

TO² + TU² = OU²

(h-10)² + r² = 10²                                   [insert values]

r² = 10² - (h-10)²                                     [change sides]

r² = 100 - (h² -20h + 100)                       [expand]

r² = 100 - h² + 20h -100                        [simplify]

r² = 20h - h²                                          [shown]

r = √20h - h²                                       ["r" in terms of "h"]

(b)

volume of cone = 1/3 * π * r² * h

===========================

\longrightarrow \sf V = \dfrac{1}{3}  * \pi  * (\sqrt{20h - h^2})^2  \  ( h)

\longrightarrow \sf V = \dfrac{1}{3}  * \pi  * (20h - h^2)  (h)

\longrightarrow \sf V = \dfrac{1}{3}  * \pi  * (20 - h) (h) ( h)

\longrightarrow \sf V = \dfrac{1}{3} \pi h^2(20-h)

To find maximum/minimum, we have to find first derivative.

(c)

<u>First derivative</u>

\Longrightarrow \sf V' =\dfrac{d}{dx} ( \dfrac{1}{3} \pi h^2(20-h) )

<u>apply chain rule</u>

\sf \Longrightarrow V'=\dfrac{\pi \left(40h-3h^2\right)}{3}

<u>Equate the first derivative to zero, that is V'(x) = 0</u>

\Longrightarrow \sf \dfrac{\pi \left(40h-3h^2\right)}{3}=0

\Longrightarrow \sf 40h-3h^2=0

\Longrightarrow \sf h(40-3h)=0

\Longrightarrow \sf h=0, \ 40-3h=0

\Longrightarrow \sf  h=0,\:h=\dfrac{40}{3}<u />

<u>maximum volume:</u>                <u>when h = 40/3</u>

\sf \Longrightarrow max=  \dfrac{1}{3} \pi (\dfrac{40}{3} )^2(20-\dfrac{40}{3} )

\sf \Longrightarrow maximum= 1241.123 \ cm^3

<u>minimum volume:</u>                 <u>when h = 0</u>

\sf \Longrightarrow min=  \dfrac{1}{3} \pi (0)^2(20-0)

\sf \Longrightarrow minimum=0 \ cm^3

6 0
1 year ago
Read 2 more answers
Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x→0+ (2x + 1)
ElenaW [278]

\displaystyle\lim_{x\to0^+}(2x+1)\cot x=\lim_{x\to0^+}\frac{2x+1}{\tan x}

As x\to0, the numerator approaches 1 while \tan x\to0, but since x\to0 from above we have \tan x>0, which suggests the limit is +\infty.

3 0
2 years ago
Other questions:
  • 729 = blank to the third power
    11·1 answer
  • Which scenario could be represented by the value −20 ? Select each correct answer. A: A diver's depth is 20 feet above sea level
    8·1 answer
  • Rename number 680=_______tens
    7·2 answers
  • What is the radius of the incircle of a regular hexagon with a side of 20 cm ?
    6·1 answer
  • Subtracting integers is the same as adding what?
    13·2 answers
  • Hi can anyone tell me the answer
    13·1 answer
  • 89.6 by 7<br><br>a 0.128<br><br>b 1.280<br><br>c. 12.800<br><br>d.128.000
    8·1 answer
  • What is the relationship between these 2 angles
    13·1 answer
  • Please help me
    11·1 answer
  • WHAT IS THE VALUE OF THE EXPRESSION 8 MORE THEN 3 TIMES THE DIFFRENCE OF 4 AND A NUMBER WHEN N=3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!