Answer:
The induced emf 1.43 s after the circuit is closed is 4.19 V
Explanation:
The current equation in LR circuit is :
.....(1)
Here I is current, V is source voltage, R is resistance, L is inductance and t is time.
The induced emf is determine by the equation :

Differentiating equation (1) with respect to time and put in above equation.


Substitute 6.05 volts for V, 0.655 Ω for R, 2.55 H for L and 1.43 s for t in the above equation.


Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.
Answer:
true
Explanation:
It is true that individual sports is different from team sports.
Individual sports depend upon the individual's hard work, focus,determination only he is responsible for his fate.
when we talk about team sports it is about co-ordination , team brilliance individual cannot team sport alone every one have to contribute for the team to succeed.
Answer:
a) Block 1 = 72.9kgm/s
Block 2 = 0kgm/s
b) vf = 1.31m/s
c) ∆KE = 936.36Joules
Explanation:
a) Momentum = mass× velocity
For block 1:
Momentum = 2.7×27
= 72.9kgm/s
For block 2:
Momentum = 53(0) (body is initially at rest)
= 0kgm/s
b) Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses of the block
u1 and u2 are their initial velocity
v is the common velocity
Given m1 = 2.7kg, u1 = 27m/s, m2 = 53kg, u2 = 0m/s (body at rest)
2.7(27)+53(0) = (2.7+53)v
72.9 = 55.7v
V = 72.9/55.7
Vf = 1.31m/s
c) kinetic energy = 1/2mv²
Kinetic energy of block 1 = 1/2×2.7(27)²
= 984.15Joules
Kinetic energy of block 2 before collision = 0kgm/s
Total KE before collision = 984.15Joules
Kinetic energy after collision = 1/2(2.7+53)1.31²
= 1/2×55.7×1.31²
= 47.79Joules
∆KE = 984.15-47.79
∆KE = 936.36Joules