Answer:
Explanation:
NADH and FADH2 are both electron carriers of the electron transport chain. NADH gives up its electrons starting from Complex I, which has a higher energy level compared to other complexes. Energy is given off to pump protons across the membrane by the time electrons are transferred to ComplexIII. More electrons are pumped across the membrane as electrons move to Complex IV. Because NADH commenced giving up its electrons from Complex I (higher energy level complex), more protons are pumped across the membrane gradient, which enables ATP synthase with more power to produce 3ATP molecules per NADH molecule.
On the other hand, 2 molecules of ATP are generated by FADH2 because it starts by giving up its electrons to ComplexII. It missed a chance to pump protons across the membrane when it passed Complex I. By the time the electrons reach Complex IV, less protons have been pumped. The lesser the protons to power ATP synthase, the lesser the ATP molecules produced.
Deadly particles like SO2 that comes into contact with the air will form air pollution. This deadly particles will then form acid rain. When those rain comes into contact with water supply, they turn the water acidic. They will cause river to be too acidic for fishes and other living organisms to survive.
Answer:
please conversation with me in comment bix
Answer:
Sometimes, gene mutations prevent one or more of these proteins from working properly. By changing a gene’s instructions for making a protein, a mutation can cause the protein to malfunction or to be missing entirely. When a mutation alters a protein that plays a critical role in the body
Explanation: