Answer:
Thomson--atoms cotain electron
Ernest Rutherford--atoms have a positive nucleus
R.A Millikan--electrons have Q=-1
Dalton--atoms are indivisible
<span>The density of the solution =1.05 g/ml.
</span><span>The total mass of the resulting solution is = 398.7 g (CaCl2 + water)
</span>
Find moles of CaCl2 and water.
Molar mass of CaCl2 = 110 (approx.)
Moles of CaCl2 = 23.7 / 110 = 0.22
so, moles of Cl- ion = 2 x 0.22 = 0.44 (because each molecule of CaCl2 will give two Cl- ions)
Moles of water = 375 / 18 = 20.83
Now, Mole fraction of CaCl2 = (moles of CaCl2) / (total moles)
total moles = moles of Cl- ions + moles of Ca2+ ions + moles of water
= 0.44 + 0.22 + 20.83
=21.49
So, mole fraction = 0.44 / (21.49) = 0.02
Guess what !!! density is not used. No need
The experimental density of CO2 at STP is 0.10/0.056=1.78 g/L. The percent error equals to (1.96-1.78)/1.96*100%=9.18%. So the answer is 9.18%.
Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k 
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.