Answer:
31.60% phosphorus
Explanation:
To find the percent by mass, you first calculate the total mass and then the mass of phosphorus, and finally divide phosphorus mass by total.
Phosphorus mass: the molar mass of P is 30.97 g/mol, and since there's 1 mole of P, we just have 30.97 g.
Total mass: we add all the molar masses of the components together.
We have 3 moles of H, so we multiply 3 by 1.008 g/mol = 3.024 g H.
We already calculated the mass of phosphorus: 30.97 g P.
We have 4 moles of O, so we multiply 4 by 16.00 g/mol = 64.00 g O.
The total is then the sum: 3.024 + 30.97 + 64.00 = 97.994 g ≈ 97.99 g
Now, to find the percentage, we take 30.97 g P and divide by 97.99:
30.97/97.99 ≈ 0.3160 ⇒ 31.60% P
Thus, the answer is 31.60% phosphorus.
Hope this helps!
Answer:
solid gas liquid
Explanation:
solid liquid can never form a vapor
Answer:
Empirical formula: BH3
Molecular Formula: B2H6
Explanation:
To solve the exercise, we need to know how many boron atoms and how many hydrogen atoms the compound has. We know that of the total weight of the compound, 78.14% correspond to boron and 21.86% to hydrogen. As the weight of the compound is between 27 g and 28 g, using the above percentages we can solve that the compound has between 21.1 g and 21.8 g of boron, and between 5.9 g and 6.1 g of hydrogen:
100% _____ 27 g
78.14% _____ x = 78.14% * 27g / 100% = 21.1 g boron
100% ______27 g
21.86% ______ x = 21.86% * 27g / 100% = 5.9 g hydrogen
100% _____ 28 g
78.14% _____ x = 78.14% * 28g / 100% = 21.8 g boron
100% _____ 28g
21.86% _____ x = 21.86% * 28g / 100% = 6.1 g hydrogen
So, if the atomic weight of boron is 10.8 g, there must be two boron atoms in the compound that sum 21.6 g. The weight of hydrogen is 1 g, so the compound must have six hydrogen atoms.
The molecular formula represents the real amount of atoms that form a compound. Therefore, the molecular formula of the compound is B2H6.
The empirical formula is the minimum expression that represents the proportion of atoms in a compound. For example, ethane has 2 carbon atoms and 6 hydrogen atoms, so its molecular formula is C2H6, however, its empirical formula is CH3. Therefore, the empirical formula of the boron compound is BH3.
. The energy of shells in a hydrogen atom is calculated by the formula E = -Eo/n^2 where n is any integer, and Eo = 2.179X10^-18 J. So, the energy of a ground state electron in hydrogen is:
E = -2.179X10^-18 J / 1^2 = -2.179X10^-21 kJ
Consequently, to ionize this electron would require the input of 2.179X10^-21 kJ
2. The wavelength of a photon with this energy would be:
Energy = hc/wavelength
wavelength = hc/energy
wavelength = 6.626X10^-34 Js (2.998X10^8 m/s) / 2.179X10^-18 J = 9.116X10^-8 m
Converting to nanometers gives: 91.16 nm
3. Repeat the calculation in 1, but using n=5.
4. Repeat the calculation in 2 using the energy calculated in 3.