Answer:
AH = 1 or 4
CH = 4 or 1
Step-by-step explanation:
An altitude divides a right triangle into similar triangles. That means the sides are in proportion, so ...
AH/BH = BH/CH
AH·CH = BH²
The problem statement tells us AH + CH = AC = 5, so we can write
AH·(5 -AH) = BH²
AH·(5 -AH) = 2² = 4
This gives us the quadratic ...
AH² -5AH +4 = 0 . . . . in standard form
(AH -4)(AH -1) = 0 . . . . factored
This equation has solutions AH = 1 or 4, the values of AH that make the factors be zero. Then CH = 5-AH = 4 or 1.
B
given f(x) in factored form, equate to zero for x-intercepts
(x - 8)(x - 4) = 0, hence
x = 4, x = 8 ← x- intercepts
The vertex lies on the axis of symmetry which is situated at the midpoint of the x- intercepts
x- coordinate of vertex =
= 6
f(6) = (6 - 8 )(6 - 4 ) = -2 × 2 = - 4 ← y-coordinate
vertex = (6, - 4 ) → B
X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>