F(x) = 4x - 9
let f(x) = y, this implies that x = f⁻¹(y)
y = 4x - 9 Let us solve for x.
4x - 9 = y
4x = y + 9
x = (y + 9)/4
Recall that x = f⁻¹(y),
x = (y + 9)/4
f⁻¹(y) = (y + 9)/4
That means that for f⁻¹(x)
f⁻¹(x) = (x + 9)/4
Hope this explains it.
Answer:
3π square units.
Step-by-step explanation:
We can use the disk method.
Since we are revolving around AB, we have a vertical axis of revolution.
So, our representative rectangle will be horizontal.
R₁ is bounded by y = 9x.
So, x = y/9.
Our radius since our axis is AB will be 1 - x or 1 - y/9.
And we are integrating from y = 0 to y = 9.
By the disk method (for a vertical axis of revolution):
![\displaystyle V=\pi \int_a^b [R(y)]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%20%5Cint_a%5Eb%20%5BR%28y%29%5D%5E2%5C%2C%20dy)
So:

Simplify:

Integrate:
![\displaystyle V=\pi\Big[y-\frac{1}{9}y^2+\frac{1}{243}y^3\Big|_0^9\Big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5CBig%5By-%5Cfrac%7B1%7D%7B9%7Dy%5E2%2B%5Cfrac%7B1%7D%7B243%7Dy%5E3%5CBig%7C_0%5E9%5CBig%5D)
Evaluate (I ignored the 0):
![\displaystyle V=\pi[9-\frac{1}{9}(9)^2+\frac{1}{243}(9^3)]=3\pi](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5B9-%5Cfrac%7B1%7D%7B9%7D%289%29%5E2%2B%5Cfrac%7B1%7D%7B243%7D%289%5E3%29%5D%3D3%5Cpi)
The volume of the solid is 3π square units.
Note:
You can do this without calculus. Notice that R₁ revolved around AB is simply a right cone with radius 1 and height 9. Then by the volume for a cone formula:

We acquire the exact same answer.
Y will equal 36. You can figure this out because you know y is double the value of x. If x is 18,you can just multiply it by 2, which equals 36