Answer:
61,940
Step-by-step explanation:
For a recursive sequence of reasonable length, it is convenient to use a suitable calculator for figuring the terms of it. Since each term not only depends on previous terms, but also depends on the term number, it works well to use a spreadsheet for doing the calculations. The formula is easily entered and replicated for as many terms as may be required.
__
The result of executing the given algorithm is shown in the attachment. (We have assumed that g_1 means g[-1], and that g_2 means g[-2]. These are the starting values required to compute g[0] when k=0.
That calculation looks like ...
g[0] = (0 -1)×g[-1] +g[-2} = (-1)(9) +5 = -4
The attachment shows the last term (for k=8) is 61,940.
Answer:

Step-by-step explanation:
Given:


The attachment completes the question
From the attachment, the slope of the line was calculated as:

This step is inaccurate because the slope of a line is calculated using

Which gives



The line equation is then calculated using:

Substitute values for m, x1 and y1


Open bracket

Make y the subject

Answer:
the average daily balance is 500
Step-by-step explanation:
If a payment of 5,000 is made on the tenth day you can divide 5,000 by ten to get the amount payed everyday before hand. Once you do that you will end up with the answer of 500. Therefore the average daily balance is 500
Answer:

Step-by-step explanation:
Remember:
![(\sqrt[n]{a})^n=a\\\\(a+b)=a^2+2ab+b^2](https://tex.z-dn.net/?f=%28%5Csqrt%5Bn%5D%7Ba%7D%29%5En%3Da%5C%5C%5C%5C%28a%2Bb%29%3Da%5E2%2B2ab%2Bb%5E2)
Given the equation
, you need to solve for the variable "x" to find its value.
You need to square both sides of the equation:


Simplifying, you get:

Factor the quadratic equation. Find two numbers whose sum be 7 and whose product be -8. These are: -1 and 8:

Then:

Let's check if the first solution is correct:

(It checks)
Let's check if the second solution is correct:

(It does not checks)
Therefore, the solution is:

Answer:
B. The range of the function is all real numbers