<span>No sé la forma correcta de hacerlo, pero encontrar conjuntos de dos números que pueden igualar 12, luego encontrar cuál de los encaja en la segunda ecuación correctamente.</span>
Answer:
C) 16, 6
Step-by-step explanation:
- Set AB and DC equal to eachother. 4x = x + 12.
- Subtract x from both sides. 3x = 12
- Divide by 3 to get x alone. x = 4
- Plug this x value in the equation for AB. 4•(4) = 16
- We know the AD equals 6, so that will be one of the values and we now know that AB equals 16.
Answer:
It’s the second one
Step-by-step explanation:
Answer:
x = ±3 sqrt(2)
Step-by-step explanation:
x^2 + x^2=6^2
Combine like terms
2x^2 = 6^2
Divide each side by 2
x^2 = * 6^2/2
Take the square root of each side
sqrt(x^2) =± sqrt( 6^2/2)
Remember that sqrt(a/b) = ±sqrt(a ) /sqrt(b)
x = ±sqrt(6^2)/sqrt(2)
x = ±6 /sqrt(2)
We do not leave square roots in the denominator, so we multiply the top and bottom by sqrt(2)
x = ±6 /sqrt(2) * sqrt(2)/ sqrt(2)
x = ±6 *sqrt(2) /( sqrt(2)*sqrt(2))
x = ±6 sqrt(2) /(2)
x = ±3 sqrt(2)
120% that would be the percentage of 12/10.
12 divided by 10 = 1.2
1.2 times 100 = 120
That is equal to 120%