Angle m∠1 if formed by a tangent and secant intersecting outside of circle. The intercepted arcs are arc LK and arc JK.
Thus;
Angle formed by Tangent and secant
=1/2(DIFFERENCE of Intercepted Arcs)
m∠1=1/2(mJK-LK)
Answer: m∠1=1/2(mJK-KL)
Answer: Jesse
Step-by-step explanation:
Elizabeth - 50f/10s
Jesse - 55f/10s
Reagan - 53.3333333/10s
Jesse is the fastest
Answer:
600
Step-by-step explanation:
How to do it in your head (secret):
3*2 = 6
add 2 zeros after the 6 since there are 2 zeros in total in this equation 2<u><em>0 </em></u>and 3<u><em>0</em></u> so:
30*20 = 600
:D
Answer:y= -4
Step-by-step explanation:
1 Solve for xx in 7x-4y=-127x−4y=−12.
x=\frac{4(y-3)}{7}
x=
7
4(y−3)
2 Substitute x=\frac{4(y-3)}{7}x=
7
4(y−3)
into 9x-4y=-209x−4y=−20.
\frac{36(y-3)}{7}-4y=-20
7
36(y−3)
−4y=−20
3 Solve for yy in \frac{36(y-3)}{7}-4y=-20
7
36(y−3)
−4y=−20.
y=-4
y=−4
4 Substitute y=-4y=−4 into x=\frac{4(y-3)}{7}x=
7
4(y−3)
.
x=-4
x=−4
5 Therefore,
\begin{aligned}&x=-4\\&y=-4\end{aligned}
x=−4
y=−4