Answer:
Second option: 81y^4 - 16x^2, the difference of squares
Step-by-step explanation:
(9y^2-4x)(9y^2+4x) is a special product named difference of squares, then we can apply this formula:
(a-b)(a+b)=a^2-b^2, with a=9y^2 and b=4x, then:
(9y^2-4x)(9y^2+4x)=(9y^2)^2 - (4x)^2
(9y^2-4x)(9y^2+4x)=(9)^2 (y^2)^2 - (4)^2 (x)^2
(9y^2-4x)(9y^2+4x)=81y^(2*2) - 16x^2
(9y^2-4x)(9y^2+4x)=81y^4 - 16x^2
Answer:
77/16
Step-by-step explanation:
Answer:
the transistors have L=1 mm of linear size
Step-by-step explanation:
For the silicon chip the area is A=1 cm² and for the transistors the area is At=L² (L=linear size) . Then since N= 10 billion transistors of area At should fit in the area A
A=N*At
A=N*L²
solving for L
L= √(A/N)
Assuming that 1 billion=10⁹ (short scale version of billion), then
L= √(A/N) = √(1 cm²/10⁹) = 1 cm / 10³ = 1 mm
then the transistors have L=1 mm of linear size
Answer:
0
Step-by-step explanation:
Add up all of the side lengths and you get 148.4 as the perimeter.
subtract that from 150 and you're left with 1.6 m left of tape