Answer:
1680 ways
Step-by-step explanation:
Total number of integers = 10
Number of integers to be selected = 6
Second smallest integer must be 3. This means the smallest integer can be either 1 or 2. So, there are 2 ways to select the smallest integer and only 1 way to select the second smallest integer.
<u>2 ways</u> <u>1 way</u> <u> </u> <u> </u> <u> </u> <u> </u>
Each of the line represent the digit in the integer.
After selecting the two digits, we have 4 places which can be filled by 7 integers. Number of ways to select 4 digits from 7 will be 7P4 = 840
Therefore, the total number of ways to form 6 distinct integers according to the given criteria will be = 1 x 2 x 840 = 1680 ways
Therefore, there are 1680 ways to pick six distinct integers.
Answer:
Triangle ABCABCA, B, C the option C is correct.
Step-by-step explanation:
As in the triangle ABCABCA, B, C
the given Choice A is DEFDEFD, E, F, and Choice B is GHIGHIG, H, I is in the same sequence as ABCABCA, B, C so option C is correct.
The answer is:
(-28/81)/(-2/3) = -84/(-162) = 42/81
Work
Think of this simple question:
Two number when multiplied together give 15. If one number is 5, then the other is (15/5)=3.
Responder:
10 (2ny- (x-y))
Explicación paso a paso:
Dada la expresión 10ny-10x + 10ny + 10y, para simplificar la expresión, se deben seguir los siguientes pasos;
Paso 1; Separa la expresión en términos similares
= 10ny-10x + 10ny + 10y
= (10ny + 10ny) - (10x + 10y)
Paso 2: Factoriza los valores comunes en ambos paréntesis
10ny (1 + 1) - 10 (x-y)
= 10ny (2) - 10 (x-y)
= 20ny - 10 (x-y)
Factoriza nuestro valor común en ambos términos:
= 10 (2ny- (x-y))