\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
Answer:
1 gamma = 15/8 alphas
Step-by-step explanation:
so we start by finding out what 1 gamma and 1 beta equals.
we know 4 gammas = 5 betas so if we divide by four on both sides we get:
1 gamma = 5/4 betas. we can apply that same procedure to 2 betas = 3 alphas and get 1 beta = 3/2 alphas
we know that 1 gamma = 5/4 betas and 1 beta = 3/2 alphas so how many alphas = 5/4 betas? using a proportion of ((3/2)/1) = ((x)/(5/4)) we can find that 5/4 betas = 15/8 alphas
therefore we know 1 gamma = 15/8 alphas or 1 and 7/8 alphas
Using the formula given for area:
Area = 1/2 (7 +5)4 = 1/2(12)4 = 24 square cm.
Now to find the volume multiply the area by the depth:
24 x 6 = 144 cubic cm.
Answer:just do the exam
Step-by-step explanation:
You could try and multiply I believe so .