Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
- Terms/Coefficients
- Expanding
- Functions
- Function Notation
- Graphing
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Integrals
- Definite Integrals
- Area under the curve
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Shell Method:

- [Shell Method] <em>x</em> is the radius
- [Shell Method] 2πx is the circumference
- [Shell Method] 2πxf(x) is the surface area
- [Shell Method] 2πxf(x)dx is the volume
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Graph of region
y = x²
x = 2
y = 4
Axis of Revolution: y = -1
<u>Step 2: Sort</u>
<em>We are revolving around a horizontal line.</em>
- [Function] Rewrite in terms of <em>y</em>: x = √y
- [Graph] Identify bounds of integration: [0, 4]
<u>Step 3: Find Volume Pt. 1</u>
- [Shell Method] Find distance of radius <em>x</em>:

- [Shell Method] Find circumference variable f(x) [Area]:

- [Shell Method] Substitute in variables:

- [Integral] Rewrite integrand [Exponential Rule - Root Rewrite]:

- [Integral] Expand integrand:

- [Integral] Integrate [Integration Rule - Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Multiply:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Applications of Integration
Book: College Calculus 10e