Answer:
the process that would make them go as dark or light would be because they and blend in better to no the eaten it is called "latrell Selection" so in the Beach mice would stay light because they look like sand but if they were dark they would be easy to see that is why they are not there same thing for the forest but the other way around
if the forest changed to more sandy it would let lighter mice live there to but the dark mice would still live because it is not all sand i like it would be equal amount of dark and light mice because they would both have there spot to hide and just as vulnerable if the switched spots
Hope This Helped
Caro means expensive in spanish
<span>when the breaking down of acetylcholine is not performed, then symptoms similar to those of poisoning with acetylcholinesterase inhibitors would occur. This would be highly hazardous to the human system as severe poisoning as we all know is very lethal. Even a fetus would not develop with this.</span>
Answer:
true
Explanation:
i took the quiz and got the question correct. please like and rate my answer
Answer:
In an ancestral elm species, mutations gave rise to the phenotypic trait "winged-seeds". Subsequently, selection favored elm plants with winged-seeds that diverged over time to become a separate species
Explanation:
A mutation is a genetic change in the DNA sequence. In general, mutations have a negative impact on the fitness of the individual (i.e., mutations are generally deleterious) and therefore they disappear from the population. However, there are situations where mutations are beneficial and confer an adaptive advantage, thereby increasing their frequency in the population. In this case, mutations associated with the formation of winged-seeds conferred an adaptive advantage (i.e., higher seed dispersal capacity) to individuals who had this phenotypic trait, thereby these individuals had more chances to reproduce and pass their genes to the next generation. Eventually, Elm plants with winged-seeds accumulated sufficient genetic differences to prevent interbreeding, leading to the formation of a separate species.