Answer:
Step-by-step explanation:
2915 can stay as it is; 15.458 should be rounded down to 15. Then we have
2915-15, or 2900 (which is a very reasonable estimate).
Answer:
39. r = 13.4
40. m = 12
Step-by-step explanation:
39. Given the equation,
, to solve for r, the following are the correct steps to take to arrive at the solution:
(given)
Add 0.8 to both sides of the equation (addition property of equality)
(this is where the error occurred.)

40. The correct steps to take in solving the equation,
is as follows:
(given)
Multiply both sides by 3 (multiplication property of equality)

(this is where the error occurred. This is what we should have at this line/step)
(dividing both sides by -1)
Hi there:-)
She has=3+3/4=15/4
She ordered=11+1/2=23/2
Now how many she has in all
(15/4)+(23/2)=15 1/4 ...answer
15 1/4 means 15+1/4=15.25
Hope it helps
![\bf f(x)=x+3x^{\frac{2}{3}}\implies \cfrac{dy}{dx}=1+3\left(\frac{2}{3}x^{-\frac{1}{3}} \right)\implies \cfrac{dy}{dx}=1+\cfrac{2}{\sqrt[3]{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\sqrt[3]{x}+2\implies -2=\sqrt[3]{x} \\\\\\ (-2)^3=x\implies \boxed{-8=x}\\\\ -------------------------------\\\\ 0=\sqrt[3]{x}\implies \boxed{0=x}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dx%2B3x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B3%5Cleft%28%5Cfrac%7B2%7D%7B3%7Dx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%20%20%5Cright%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B%5Ccfrac%7B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Csqrt%5B3%5D%7Bx%7D%2B2%5Cimplies%20-2%3D%5Csqrt%5B3%5D%7Bx%7D%0A%5C%5C%5C%5C%5C%5C%0A%28-2%29%5E3%3Dx%5Cimplies%20%5Cboxed%7B-8%3Dx%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A0%3D%5Csqrt%5B3%5D%7Bx%7D%5Cimplies%20%5Cboxed%7B0%3Dx%7D)
now, f(0) = 0, and f(-8) is an imaginary value or no real value.
now, f(-10) will also give us an imaginary value
and f(1) = 4
so, doing a first-derivative test on 0, is imaginary to the left and positive on the right, and before and after 1, is positive as well, so f(x) is going up on those intervals.
however, f(0) is 0 and f(1) is higher up, so the absolute maximum will have to be f(1), and we can use f(0) as a minimum, and since it's the only one, the absolute minimum.
the other two, the endpoint of -10 and the critical point of -8, do not yield any values for f(x).