Values of slope = (86-71) / (3pm - 10 am) = 15 / 5 = 3
This value of the slope gives the average rise in temperature per hour.
For this case, what we must do is find the surface area of the cube.
By definition, the surface area of a cube is given by:

Where,
L: length of the sides of the cube.
Substituting values we have:
Answer:
The total surface area that will be painted is:
24 cm²
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so

It seems you tried to write √(-20)
use the fact tha -1 = i^2
Then, √(-20) = √(20i^2) =(√20) i = (√(5*4))i = 2√5 i = 2i√5, which seems to be what you tried to write in the option B.
Its 5y-3x, you can do this by taking the racial number and give that to your beautiful little sister