Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
What you do is you combine like terms... so in your instance it is using m.
9m+2= 3m-10
-3m -3m
3m + 2 =-10
+10 +10
3m= 12
m= 4
We need to use Law of sine.
sin A/a = sin C/c
sin A/|CB| = sin C/|AB|
sin A/14 = sin(118⁰)/ 20
sin A = (14*sin(118⁰))/ 20
A=arcsin((14*sin(118⁰))/ 20) ≈ 38⁰
Answer:
A
Step-by-step explanation:
Given the inequality :
v + 4 > 2 and 8v - 20 < 36
v + 4 > 2
v > 2 - 4
V > - 2
8v - 20 < 36
8v < 36 + 20
8v < 56
v < 56/8
v < 7
Hence,
v > - 2 and v < 7
-2 < v < 7