Line BE and KE are the same length, so set the 2 equations to equal and solve for P.
7p+7 = 37-3p
Add 3 p to both sides:
10p +7 = 37
Subtract 7 from each side:
10p = 30
Divide both sides by 10:
p = 30/10
p = 3
The answer is B.
Subtract 5 from 3 and that will be -2 which equals 9
Answer:
30
Step-by-step explanation:
To find the determinant of a parallelogram given points (a, b), (c, d), and (e, f), we can use
and calculate the determinant of that. Three points on the parallelogram are (-1,1), (-1, -5), and (4, 5). Plugging these into the matrix, we get
. The determinant is equal to
![-1 *det \left[\begin{array}{ccc}-5&1\\5&1\end{array}\right] \\- 1 * det \left[\begin{array}{ccc}-1&1\\4&1\end{array}\right] \\\\+ 1 * det \left[\begin{array}{ccc}-1&-5\\4&5\end{array}\right] \\= -1 * (-5*1 - (1*5))- 1 * (-1 * 1 - (4*1)) + 1 * (-1 * 5 - (-5*4)) \\= -1 *(-5-5) -1 * (-1 - 4) + 1 * (-5 - (-20))\\= -1 * (-10) -1 * (-5) +1 * (15)\\= 10 + 5 + 15\\=30](https://tex.z-dn.net/?f=-1%20%2Adet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%261%5C%5C5%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C-%201%20%2A%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%261%5C%5C4%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%2B%201%20%2A%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-5%5C%5C4%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20-1%20%2A%20%28-5%2A1%20-%20%281%2A5%29%29-%201%20%2A%20%28-1%20%2A%201%20-%20%284%2A1%29%29%20%2B%201%20%2A%20%28-1%20%2A%205%20-%20%28-5%2A4%29%29%20%5C%5C%3D%20-1%20%2A%28-5-5%29%20-1%20%2A%20%28-1%20-%204%29%20%2B%201%20%2A%20%28-5%20-%20%28-20%29%29%5C%5C%3D%20-1%20%2A%20%28-10%29%20-1%20%2A%20%28-5%29%20%2B1%20%2A%20%2815%29%5C%5C%3D%2010%20%2B%205%20%2B%2015%5C%5C%3D30)
8:32 simplyfies to 1:4 .....there is your answer 1:4
Answer:
24.3
Step-by-step explanation:
area of a rectangle =length*width
if we know at least the 2 quantities already
total area = 656.1
and one of the sides = 27
we have to divide the are by one of the sides to get the remaining side
width = area/length
656.1 divided by 27 equals 24.3