Answer:
The found values are:
y = 10
<JKM = 106°
<MKL = 74°
Step-by-step explanation:
(See the diagram attached)
As JKL is a straight horizontal line, angle measure from JK to KL is 180°.
We can see in the diagram that line KM is dividing this angle of 180° into 2 unequal parts.
Which means that the sum of <JKM and <MKL is equals to 180°.
Mathematically, it can be written as:

Substitute the values of both angle to solve the equation:

Put in the formulas of both angle to find their values:
<JKM = 10y + 6
<JKM = 10(10)+6
<JKM = 106°
<MKL = 8y - 6
<MKL = 8(10)-6
<MKL = 74°
<h2>Answer-Average rate of change(A(x)) of f(x) over a interval [a,b] is given by:</h2><h2 /><h2>A(x) = \frac{f(b)-f(a)}{b-a}A(x)= </h2><h2>b−a</h2><h2>f(b)−f(a)</h2><h2> </h2><h2> </h2><h2 /><h2>Given the function:</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^xf(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>x</h2><h2> </h2><h2 /><h2>We have to find the average rate of change from x = 1 to x= 2</h2><h2 /><h2>At x = 1</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^1 = 5f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>1</h2><h2> =5</h2><h2 /><h2>At x = 2</h2><h2 /><h2>then;</h2><h2 /><h2>f(x) = 20 \cdot(\frac{1}{4})^2=20 \cdot \frac{1}{16} = 1.25f(x)=20⋅( </h2><h2>4</h2><h2>1</h2><h2> </h2><h2> ) </h2><h2>2</h2><h2> =20⋅ </h2><h2>16</h2><h2>1</h2><h2> </h2><h2> =1.25</h2><h2 /><h2>Substitute these in above formula we have;</h2><h2 /><h2>A(x) = \frac{f(2)-f(1)}{2-1}A(x)= </h2><h2>2−1</h2><h2>f(2)−f(1)</h2><h2> </h2><h2> </h2><h2 /><h2>⇒A(x) = \frac{1.25-5}{1}=-3.75A(x)= </h2><h2>1</h2><h2>1.25−5</h2><h2> </h2><h2> =−3.75</h2><h2 /><h2>therefore, average rate of change of the function f(x) from x = 1 to x = 2 is, -3.75</h2>
<h2>Please Mark me as brainlist. </h2>
Answer:
you cheater
Step-by-step explanation:
Tring to cheat because you don't feel like doing it. Hopefully you fail so you can learn your lesson
I think it’s the one on the bottom left
Answer:
6 vertices for triangular prisms.