9. ¹/₃(x + 6) = 8
¹/₃(x) + ¹/₃(6) = 8
¹/₃x + 2 = 8
<u> - 2 - 2</u>
3 · ¹/₃x = 6 · 3
x = 18
15. ¹/₅(x + 10) = 6
¹/₅(x) + ¹/₅(10) = 6
¹/₅x + 2 = 6
<u> - 2 - 2</u>
5 · ¹/₅x = 4 · 5
x = 20
20. ¹/₈(24x + 32) = 10
¹/₈(24x) + ¹/₈(32) = 10
3x + 4 = 10
<u> - 4 - 4</u>
<u>3x</u> = <u>6</u>
3 3
x = 2
32. 5 - ¹/₂(x - 6) = 4
5 - ¹/₂(x) - ¹/₂(-6) = 4
5 - ¹/₂x + 3 = 4
5 + 3 - ¹/₂x = 4
8 - ¹/₂x = 4
<u>- 8 - 8</u>
-2 · (-¹/₂x) = -4 · (-2)
x = 8
33. ²/₃(3x - 6) = 3
²/₃(3x) - ²/₃(6) = 3
2x - 4 = 3
<u> + 4 + 4</u>
<u>2x</u> = <u>7</u>
2 2
x = 3¹/₂
The best and most correct answer among the choices provided by your question is the fourth choice or letter D.
We can imply from the given points that the figure is four-side or a quadrilateral.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
9x+13=2x+48
-2x -2x
7x+13=48
-13 -13
7x=35
/7 /7
x=5
y=9(5)+13
y=45+13
y=58
390/6=65
65x10+650
650 is your answer
hope this helps
Answer:
- square: 9 square units
- triangle: 24 square units
Step-by-step explanation:
Using a suitable formula the area of a polygon can be computed from the coordinates of its vertices. You want the areas of the given square and triangle.
<h3>Square</h3>
The spreadsheet in the first attachment uses a formula for the area based on the given vertices. It computes half the absolute value of the sum of products of the x-coordinate and the difference of y-coordinates of the next and previous points going around the figure.
For this figure, going to that trouble isn't needed, as a graph quickly reveals the figure to be a 3×3 square.
The area of the square is 9 square units.
<h3>Triangle</h3>
The same formula can be applied to the coordinates of the vertices of a triangle. The spreadsheet in the second attachment calculates the area of the 8×6 triangle.
The area of the triangle is 24 square units.
__
<em>Additional comment</em>
We have called the triangle an "8×6 triangle." The intention here is to note that it has a base of 8 units and a height of 6 units. Its area is half that of a rectangle with the same dimensions. These dimensions are readily observed in the graph of the vertices.