Answer:
cold
Explanation:
the ones that flow out from the equator are warm, while the ones that flow towards the equator are cool
If organisms that lived there before had exceeded the carrying capacity then the ecosystem would no longer be able to sustain life
Exactly 989527/1048576, or approximately 94.37%
Since each trait is carried on a different chromosome, the two traits are independent of each other. Since both parents are heterozygous for the trait, each parent can contribute 1 of a possible 4 combinations of the alleles. So there are 16 possible offspring. I'll use "a", "A", "b", "B" to represent each allele and the possible children are aabb, aabB, aaBb, aaBB, aAbb, aAbB, aABb, aABB, Aabb, AabB, AaBb, AaBB, AAbb, AAbB, AABb, and AABB
Of the above 16 possibilities, there are 7 that are homozygous in an undesired traint and 9 that don't exhibit the undesired trait. So let's first calculate the probability of "what are the chances that all 5 children not exhibiting an undesired trait?" and then subtract that result from 1. So
1-(9/16)^5 = 1 - 59049/1048576 = 989527/1048576 which is approximately 0.943686485 = 94.3686485%
So the answer is exactly 989527/1048576, or approximately 94.37%
Answer:
Answer is C.
Explanation:
For A and B, a base substitution affects one of the three bases that comprise a codon, the DNA/RNA unit that corresponds to a particular amino acid. If one base is substituted, one codon and therefore one amino acid will be affected. Codons have built-in redundancy, so even by changing one base, the new codon sometimes still corresponds to the same amino acid. Therefore, a base substitution at most affects one amino acid, and sometimes doesn't affect it all.
Frameshift mutations cause a lot more trouble. These occur when you have a deletion or insertion that changes the number of bases in your gene. As a result, the "frame" of the codons changes (everything shifts one way or the other by the number of bases added/removed). This affects EVERY codon downstream of the mutation, so you can imagine that such a mutation would have a bigger effect the closer to the start of the gene it occurs. This is why C is correct.
I would say that the most likely environment for these two rock types to be ridge formers would be an arid climate like a desert where there was little water to dissolve. Also, even in a normal temperate environment, dolomite can form a very resistant ridge or cliff former as is the case with the Palliser Formation in Banff Park which forms a pronounced cliff which is very extensive.