Step-by-step explanation:
ever coner should have a value.... for example sinA or cos$
please check the question again
The first step to solving this is to use tan(t) =
![\frac{sin(t)}{cos(t)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bsin%28t%29%7D%7Bcos%28t%29%7D%20)
to transform this expression.
cos(x) ×
![( \frac{sin(x)}{cos(x)} + cot(x) )](https://tex.z-dn.net/?f=%28%20%5Cfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%20%2B%20cot%28x%29%20%29)
Using cot(t) =
![\frac{cos(x)}{sin(x)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%20)
,, transform the expression again.
cos(x) ×
![( \frac{sin(x)}{cos(x)} + \frac{cos(x)}{sin(x)} )](https://tex.z-dn.net/?f=%28%20%5Cfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%20%2B%20%20%5Cfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%20%29)
Next you need to write all numerators above the least common denominator (cos(x)sin(x)).
cos(x) ×
![\frac{sin(x)^{2} + cos(x)^{2} }{cos(x)sin(x)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bsin%28x%29%5E%7B2%7D%20%2B%20cos%28x%29%5E%7B2%7D%20%20%7D%7Bcos%28x%29sin%28x%29%7D%20)
Using sin(t)² + cos(t)² = 1,, simplify the expression.
cos(x) ×
![\frac{1}{cos(x)sin(x)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bcos%28x%29sin%28x%29%7D%20)
Reduce the expression with cos(x).
![\frac{1}{sin(x)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%28x%29%7D%20)
Lastly,, use
![\frac{1}{sin(t)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%28t%29%7D%20)
= csc(t) to transform the expression and find your final answer.
csc(x)
This means that the final answer to this expression is csc(x).
Let me know if you have any further questions.
:)
Answer:
Step-by-step explanation:
f(x) = 1/2(4)^x
Plug in 3 for x
f(3) = 1/2(4)³
Cube 4.
4³ = 4 x 4 x 4 = 64
f(3) = 1/2(64)
Multiply 64 with 1/2 (or divide by 2)
f(3) = 64/2
f(3) = 32
. What are the lower, middle, and upper quartiles of this data? 23, 15, 22, 15, 23, 15, 13, 21, 14 a. lower: 15, middle: 15, upp
icang [17]
The correct answer us D. lower: 14.5 middle: 15 upper: 22.5