Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
The balanced chemical
reaction will be:
2H2O = 2H2 + O2
<span>We are given the amount of water used in the decomposition reaction. This will be our
starting point.</span>
<span>17.0 g H2O</span> (1 mol H2O/ 18.02 g H2O) (1 mol O2/2
mol <span>H2O</span>) ( 32.00 g O2/1mol O2) = 15.09 g O2
Percent yield = actual yield / theoretical yield x 100
<span>Percent yield =10.2 g / 15.09 g
x 100</span>
Percent yield = 67.58%
Answer:a formula giving the number of atoms of each of the elements present in one molecule of a specific compound.
Explanation: