E because all base have an OH in it
Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
Answer:
Rain forest.
Explanation: Because of how humid it is in a rain forest that humidity will bring a lot of pressure from above.
To calculate the pKa of the weak acid, we use the Henderson-Hasselbalch equation. It is expressed as pH = pKa - log [HA]/[A-]. This equation takes into account the concentration of the substance that does not dissociates into ions since it is a weak acid. We caculate as follows:
pH = pKa - log [HA]/[A-]
9 = pKa - log 1/100
pKa = 7
hydrogen and carbon, hope that helped